Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.

Identifieur interne : 000052 ( Main/Exploration ); précédent : 000051; suivant : 000053

Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.

Auteurs : Wen-Jie Shu [République populaire de Chine] ; Runfa Chen [République populaire de Chine] ; Zhao-Hong Yin [République populaire de Chine] ; Feng Li [République populaire de Chine] ; Heng Zhang [République populaire de Chine] ; Hai-Ning Du [République populaire de Chine]

Source :

RBID : pubmed:32619236

Descripteurs français

English descriptors

Abstract

Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.

DOI: 10.1093/nar/gkaa558
PubMed: 32619236
PubMed Central: PMC7470948


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.</title>
<author>
<name sortKey="Shu, Wen Jie" sort="Shu, Wen Jie" uniqKey="Shu W" first="Wen-Jie" last="Shu">Wen-Jie Shu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Runfa" sort="Chen, Runfa" uniqKey="Chen R" first="Runfa" last="Chen">Runfa Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhao Hong" sort="Yin, Zhao Hong" uniqKey="Yin Z" first="Zhao-Hong" last="Yin">Zhao-Hong Yin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Feng" sort="Li, Feng" uniqKey="Li F" first="Feng" last="Li">Feng Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Heng" sort="Zhang, Heng" uniqKey="Zhang H" first="Heng" last="Zhang">Heng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062</wicri:regionArea>
<wicri:noRegion>201062</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Hai Ning" sort="Du, Hai Ning" uniqKey="Du H" first="Hai-Ning" last="Du">Hai-Ning Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32619236</idno>
<idno type="pmid">32619236</idno>
<idno type="doi">10.1093/nar/gkaa558</idno>
<idno type="pmc">PMC7470948</idno>
<idno type="wicri:Area/Main/Corpus">000052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000052</idno>
<idno type="wicri:Area/Main/Curation">000052</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000052</idno>
<idno type="wicri:Area/Main/Exploration">000052</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.</title>
<author>
<name sortKey="Shu, Wen Jie" sort="Shu, Wen Jie" uniqKey="Shu W" first="Wen-Jie" last="Shu">Wen-Jie Shu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Runfa" sort="Chen, Runfa" uniqKey="Chen R" first="Runfa" last="Chen">Runfa Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yin, Zhao Hong" sort="Yin, Zhao Hong" uniqKey="Yin Z" first="Zhao-Hong" last="Yin">Zhao-Hong Yin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Feng" sort="Li, Feng" uniqKey="Li F" first="Feng" last="Li">Feng Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Heng" sort="Zhang, Heng" uniqKey="Zhang H" first="Heng" last="Zhang">Heng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062</wicri:regionArea>
<wicri:noRegion>201062</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Hai Ning" sort="Du, Hai Ning" uniqKey="Du H" first="Hai-Ning" last="Du">Hai-Ning Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</nlm:affiliation>
<orgName type="university">Université de Wuhan</orgName>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Proliferation (genetics)</term>
<term>Chromatin (genetics)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Histone Demethylases (genetics)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>RNA, Ribosomal (genetics)</term>
<term>Repressor Proteins (genetics)</term>
<term>Ribosomal Proteins (genetics)</term>
<term>Ribosomes (genetics)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique (génétique)</term>
<term>Chromatine (génétique)</term>
<term>Histone Demethylases (génétique)</term>
<term>Phosphorylation (MeSH)</term>
<term>Prolifération cellulaire (génétique)</term>
<term>Protein kinases (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines ribosomiques (génétique)</term>
<term>Ribosomes (génétique)</term>
<term>Ribosomes (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chromatin</term>
<term>Histone Demethylases</term>
<term>Protein Kinases</term>
<term>RNA, Ribosomal</term>
<term>Repressor Proteins</term>
<term>Ribosomal Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Proliferation</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique</term>
<term>Chromatine</term>
<term>Histone Demethylases</term>
<term>Prolifération cellulaire</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Protéines ribosomiques</term>
<term>Ribosomes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phosphorylation</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phosphorylation</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32619236</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>8360-8373</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkaa558</ELocationID>
<Abstract>
<AbstractText>Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shu</LastName>
<ForeName>Wen-Jie</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Runfa</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Zhao-Hong</ForeName>
<Initials>ZH</Initials>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Heng</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai, 201062, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Hai-Ning</ForeName>
<Initials>HN</Initials>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C400296">RPH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.11.-</RegistryNumber>
<NameOfSubstance UI="D056466">Histone Demethylases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C410736">Rim15 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056466" MajorTopicYN="N">Histone Demethylases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32619236</ArticleId>
<ArticleId IdType="pii">5867104</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkaa558</ArticleId>
<ArticleId IdType="pmc">PMC7470948</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2008 Oct 15;22(20):2786-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18923077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 25;325(5948):1682-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jun;27(11):3951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17371840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 13;10(3):e0120250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25767889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(22):8015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Aug;94(2):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19446021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Mar 2;25(5):546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25660547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2019 May 1;33(9-10):578-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30846429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 20;282(29):20827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2007 Dec 17;179(6):1105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2013 Nov;19(11):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Oct;24(20):3251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23985319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12707-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16908835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 May 19;45(9):5183-5197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28334815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Feb 12;518(7538):249-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2019 Mar 07;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30843788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Dec 21;24(24):4271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Mar 21;73(6):1115-1126.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30772176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2013 May;13(5):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2018 Apr;64(2):393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29022131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(5):1298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2019 May 24;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31124783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 May;39(10):4151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Nov 17;64(4):720-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jun 13;19(11):2371-2382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28614721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jul;27(13):4815-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Aug 1;15(15):3964-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Mar 27;11(3):e1005113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(9):3672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16612005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(1):e1001455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Hubei</li>
</region>
<settlement>
<li>Wuhan</li>
</settlement>
<orgName>
<li>Université de Wuhan</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Hubei">
<name sortKey="Shu, Wen Jie" sort="Shu, Wen Jie" uniqKey="Shu W" first="Wen-Jie" last="Shu">Wen-Jie Shu</name>
</region>
<name sortKey="Chen, Runfa" sort="Chen, Runfa" uniqKey="Chen R" first="Runfa" last="Chen">Runfa Chen</name>
<name sortKey="Du, Hai Ning" sort="Du, Hai Ning" uniqKey="Du H" first="Hai-Ning" last="Du">Hai-Ning Du</name>
<name sortKey="Li, Feng" sort="Li, Feng" uniqKey="Li F" first="Feng" last="Li">Feng Li</name>
<name sortKey="Yin, Zhao Hong" sort="Yin, Zhao Hong" uniqKey="Yin Z" first="Zhao-Hong" last="Yin">Zhao-Hong Yin</name>
<name sortKey="Zhang, Heng" sort="Zhang, Heng" uniqKey="Zhang H" first="Heng" last="Zhang">Heng Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000052 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000052 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32619236
   |texte=   Rph1 coordinates transcription of ribosomal protein genes and ribosomal RNAs to control cell growth under nutrient stress conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32619236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020